Theoretical and experimental methods of the high stressed rock and rock massives mechanics
Damaskinskaya E.E., Kadomtsev A.G.
EKATERINA E. DAMASKINSKAYA, Candidate of Physical and Mathematical Sciences, Laboratory of Physics of Strength (Ioffe Institute, St. Petersburg), е-mail: Kat.Dama@mail.ioffe.ru;
ANDREJ G. KADOMTSEV, Head, Laboratory of Physics of Strength, Doctor of Physical and Mathematical Sciences (Ioffe Institute, St. Petersburg), е-mail: Andrej.Kadomtsev@mail.ioffe.ru
Physical “symptoms” of defect accumulation stages at deformation of rocks
The analysis of laboratory experiments on the deformation of mountain rocks and in-situ measurements have shown that there are two stages of defect accumulation. The first stage. The formation of defect with specific size which is determined by a typical structural element of a material. Arising defects are generated chaotically throughout the sample volume. The second stage of the deformation process is the emergence of spatial zones in which the system passes into the state of self-organized criticality. The localisation of defect formation is observed. As simulation has shown, the evolution of the “dangerous” ensembles gives rise to the formation of defects capable of development even under constant loads, which results in a fault. We are able to distinguish between the first and the second stages by way of a study of the acoustic emission signals. The analysis of the energy distribution of the acoustic emission signals caused by the deformation of rocks has shown that, at the first stage, the distribution is approximated by the exponential function. At the second stage, the energy distributions becomes the power-law. The functional form of energy distribution at the initial stages of loading allows one to reveal the spatial zone of the sample in which the localization of defect formation leading to eventual macrofracture will occur.
Key words: fracture nucleation site, defect, acoustic emission, energy distribution.
REFERENCES
1. Botvina L.R. Damage Evolution on Different Scale Levels. Izvestiya. Physics of the Solid Earth. 2011;(47)10:859-872. (in Russ.). [Botvina L.R. Jevoljucija povrezhdennosti na razlichnyh masshtabah // Fizika Zemli. 2011. № 10. S. 5–18].
2. Vinogradov S.D. About energy distribution of number of impulses during fracture of rocks. Izvestiya. Geophysics. 1959;12:1850-1852. (in Russ.). [Vinogradov S.D. O raspredelenii chisla impul'sov po jenergii pri razrushenii gornyh porod // Izv. AN SSSR. Ser. Geofiz. 1959. № 12. S. 1850–1852].
3. Hilarov V.L., Varkentin M.S., Korsukov V.E., Korsukova M.M., Kuksenko V.S. Formation of power-law size distributions of defects during fracture of materials. Physics of the Solid State. 2010;(52)7:1404-1408. (in Russ.). [Giljarov V.L., Varkentin M.S., Korsukov V.E., Korsukova M.M., Kuksenko V.S. Formirovanie stepennyh raspredelenij defektov po razmeram v processe razrushenija materialov // FTT. 2010. T. 52. S. 1311–1315].
4. Ermolov I.N., Alyeshin N.P., Potapov A.I. Nondestructive evolution. Book 2. Acoustic methods of testing. M., High School, 1991, 283 p. (in Russ.). [Ermolov I.N., Aleshin N.P., Potapov A.I. Nerazrushajushhij kontrol'. Kn. 2. Akusticheskie metody kontrolja. M.: Vysshaja shkola, 1991. 283 s.].
5. Zavyalov A.D. Medium-term prediction of earthquakes: basis, technique, realization. M., Nauka. 2006, 242 p. (in Russ.). [Zav'jalov A.D. Srednesrochnyj prognoz zemletrjasenij: osnovy, metodika, realizacija. M.: Nauka, 2006. 242 s.].
6. Kadomtsev A.G., Damaskinskaya E.E., Kuksenko V.S. Fracture features of granite under various deformation conditions. Phys. Solid State. 2011;(53):1876-1881. (in Russ.). [Kadomcev A.G., Damaskinskaja E.E., Kuksenko V.S. Osobennosti razrushenija granita pri razlichnyh uslovijah deformirovanija // FTT. 2011. T. 53. S. 1777–1782].
7. Kadomtsev A.G., Slutsker A.I., Sinani A.B., Betekhtin V.I., Damaskinskaya E.E. Local breaking stresses and hurdness of microporous SiC ceramics. Vestnik of Tambov. Univ. Technical Scienses. 2013;18:1533-1534. (in Russ.). [Kadomcev A.G., Slucker A.I., Sinani A.B., Betehtin V.I., Damaskinskaja E.E. Lokal'nye razrushajushhie naprjazhenija i tverdost' mikroporistoj SiC-keramiki // Vestn. Tambov. un-ta. Ser. Estestvennye i tehnicheskie nauki. 2013. T. 18. S. 1533–1534].
8. Kuksenko V.S., Lyashkov A.I., Mirzoev K.M. Correlation between the sizes of the cracks and duration of emission of elastic energy during loading. Doklady AN SSSR. 1982;(264);4:846-848. (in Russ.). [Kuksenko V.S., Ljashkov A.I., Mirzoev K.M. Svjaz' mezhdu razmerami obrazujushhihsja pod nagruzkoj treshhin i dlitel'nost'ju vydelenija uprugoj jenergii // DAN SSSR. 1982. T. 264, № 4. S. 846–848].
9. Malineckii G.G., Potapov A.B. Modern problems of nonlinear dynamics. M., Editoral URSS, 2002, 360 p. (in Russ.). [Malineckij G.G., Potapov A.B. Sovremennye problemy nelinejnoj dinamiki. M.: Jeditorial URSS, 2002. 360 s.].
10. Myachkin V.I., Kostrov B.V., Sobolev G.A.. Shamina O.G. Laboratory and theoretical investigation of process of earthquake preparation. Izv. AN SSSR. Physics of Earth. 1974;10:2526-2530. (in Russ.). [Mjachkin V.I., Kostrov B.V., Sobolev G.A., Shamina O.G. Laboratornye i teoreticheskie issledovanija processa podgotovki zemletrjasenija // Izv. AN SSSR. Fizika Zemli. 1974. № 10. S. 2526–2530].
11. Nicolis G., Prigozhin I. Self-organization in nonequilibrium systems. M., Mir, 1979, 512 p. (in Russ.). [Nikolis G., Prigozhin I. Samoorganizacija v neravnovesnyh sistemah. M.: Mir, 1979. 512 s].
12. Slutsker A.I., Kadomtsev A.G., Betekhtin V.I., Damaskinskaya E.E., Sinani A.B. Local breaking stresses in loaded microporous SiC ceramics. Bull. Russ. Acad. Sci. Phys. 2009;(73)10:1410-1415. (in Russ.). [Slucker A.I., Kadomcev A.G., Betehtin V.I., Damaskinskaja E.E., Sinani A.B. Lokal'nye razrushajushhie naprjazhenia v nagruzhaemoj mikroporistoj SiC-keramike // Izvestija RAN. Ser. fizicheskaja. 2009. T. 73, № 10. S. 1496–1502].
13. Sobolev G.A., Arora B., Smirnov V.B., Zavyalov A.D., Ponomarev A.V., Kumar N., Chabak S.K., Baydia P.R. Predictive abnormality of seismic mode. II. The Western Himalayas. Geophysical investigation. 2009;(10)2:23-36. (in Russ.). [Sobolev G.A., Arora B., Smirnov V.B., Zav'jalov A.D., Ponomarev A.V., Kumar N., Chabak S.K., Bajdija P.R. Prognosticheskie anomalii sejsmicheskogo rezhima. Ch. 2. Zapadnye Gimalai // Geofizicheskie issledovanija. 2009. T. 10, № 2. S. 23–36].
14. Bak P. How Nature Works. NY, Springer-Verlag, 1996.
15. Gutenberg B., Richter C.F. Seismicity of the Earth and Associated Phenomena, 2nd ed. Princeton, N.J., Princeton Univ. Press, 1954. 284 p.
16. Kei Katsumata. Imaging the high b-value anomalies within the subducting Pacific plate in the Hokkaido corner. E-LETTER Earth Planets Space. 2006, 58, e49-e52.
17. King G.C.P., Sammis C.G.. The mechanisms of finite brittle strain. Pure Appl. Geophys. 1992;(138)4:611-640.
18. Kuksenko V., Tomilin N., Damaskinskaya E., Lockner D. A two-stage model of fracture of rocks. Pure Appl. Geophys. 1996;(146)2:253-263.
19. LocknerD.A., Byerlee J.D., Kuksenko V., PonomarevA., SidorinA.ObservationsofQuasistaticFaultGrowthfromAcousticEmissions.FaultMechanicsandTransportPropertiesofRocks, ed. B. Evans, T.-F. Wong. L., AcademicPress, 1992, p. 3-31.
20. Mogi K. Study of elastic shocks caused by the fracture of heterogeneous materials and its relations to earthquake phenomena. Bull. Earthq. Res. Inst. 1962;(40)7:125-173.
21. Paterson M., Experimental Rock Deformation. New York, Springer, 1978, 254 pp.
22. Petružálek M., Vilhelm J., Rudajev V., Lokajíček T., Svitek T. Determination of the anisotropy of elastic waves monitored by a sparse sensor network. International Journal of Rock Mechanics and Mining Sciences. 2013;60:208-216.
23. Ponomarev A.V., Zavyalov A.D., Smirnov V.B., Lockner D.A. Physical modeling of the formation and evolution of seismically active fault zones. Tectonophysics. 1997;277:57-81.
24. Schorlemmer D., Wiemer S., Wyss M. Earthquake statistics at Parkfield: 1. Stationarity of b values. Journal of Geophysical Research. 2004;(109), B12307, doi:10.1029/2004JB003234. PP.17.
25. Stanchits S.A., Lockner D.A., Ponomarev A.V. Anisotropic Changes in P-Wave Velocity and Attenuation during Deformation and Fluid Infiltration of Granite. Bulletin of the Seismological Society of America. 2003;(93) 4:1803-1822.