Ship Power Plants and Their Components
Nadaraia K.
The application of multi-functional coatings to the protection of the elements of marine engineering equipment (review)
Abstract: The article presents the study of the protective coatings currently used for the protection of marine engineering equipment. It points out that the thermal oxidation (TO) of shipbuilding parts and products is one of the widely used methods of forming protective coatings on titanium alloy. Revealed are the thermal oxidation defects. It demonstrates that one of the most effective methods of coating formation on the surface of titanium alloys is a plasma electrolytic oxidation (PEO). The surface layers obtained by PEO-method have a number of practically significant characteristics: high corrosion resistance, antifriction properties, wear-resistance coupled with high adhesion to the substrate and low requirements for surface pretreatment. All the above stated peculiarities make the PEO really promising to protect the marine engineering equipment.
Key words: marine technology, aggressive media, protective coatings, plasma electrolytic oxidation.
REFERENCES
- Gnedenkov S.V., Sinebryukhov S.L. Structure and morphological characteristics of the layers formed on the surface of titanium. Corrosion : materials protection. 2004; 2:2-8.
- Gnedenkov S.V., Sinebryukhov S.L. Electrochemical impedance spectroscopy of oxide layers on the surface of titanium. Electrochemistry. 2005(41);963-971.
- Gnedenkov S.V., Sinebryukhov S.L., Mashtalyar D.V., Egorkin V.S. Tsvetnikov А.К., Minaev A.N. The composite polymer-containing protective layers on titanium. Corrosion: materials, protection. 2007;7:37-42.
- Gnedenkov S.V., Sinebryukhov S.L., Mashtalyar D.V., Tsvetnikov А.К., Minaev A.N. Influence of conditions using ultrafine polytetrafluoroethylene on the properties of composite coating. Corrosion: materials, protection. 2009;7:32-36.
- Gnedenkov S.V., Sinebryukhov S.L., Sergienko V.I. Composite multifunctional coatings formed on metals and alloys by plasma electrolytic oxidation. Vladivostok, Dal’ nauka, 2013, 460 p.
- Gordienko P.S., Tyurin V.I., Gudovtseva V.O., Sinebryukhov S.L., Gnedenkov S.V., Zavidnaya A.G., Rudnev V.S., Kurnosova A.G. Restoring the protective properties of coatings on titanium alloys by method of microarc oxidation. Problems of corrosion protection and structural alloys in sea water: Abstract of. All-Union Conf. Vladivostok, 1991, p. 120.
- Klabukov A.G., Zuev A.M. Increased wear resistance of titanium alloys by thermal oxidation. Proceedings of the Universities (Mechanical Engineering). 1974;3:120-124.
- Lazarev E.M., Kornilova Z.I., Fedorchuk N.M. Oxidation of titanium alloys. М., Science, 1985, 139 p.
- Minaev A.N., Gnedenkov A.S., Gnedenkov S.V., Sinebryukhov S.L., Mashtalyar D.V., Egorkin V.S. The multipurpose protective coatings for ships power equipment. Marine intellectual technologies. 2013;1–1:49-55.
- Minaev A.N., Gnedenkov S.V., Sinebryukhov S.L., Mashtalyar D.V., Sidorova M.V., Tsvetkov Yu.A., Samokhin A.V. Antiscailing composite coatings obtained by plasma electrolytic oxidation technology. Proceedings RFPF. 2011(69);1:81-92.
- Nistratova M.V. Protective oxide coatings on magnesium alloys, obtained by method of plasma electrolytic oxidation . Advanced materials. 2008(5):674-679.
- Ravin A.A. Experimental studies of the corrosion of marine pipelines in the sea water. Marine intellectual technologies. 2012;1:25-28.
- RD 5 R.95066-90. Thermal oxidation (antifriction and protective) components of alloys PT-3V. Typical technological process (N 1, 29.12.1998).
- Suminov I.V., Belkin P.N., Epelfeld A.V. Plasma electrolytic modification of the surface of metals and alloys. M., Technosphere, 2011, 512 p.
- Shatalov V.K., Fatiyev I.S., Mikhailov V.I., Groshev A.L. Antifriction surfacing of titanium alloys. Science and education. 2012;5:424-433.
- Agüero A., González V., Gutiérrez M., Muelas R. Oxidation under pure steam: Cr based protective oxides and coatings. Surface & Coatings Technology. 2013(237):30-38.
- Aliofkhazraei M., Rouhaghdam A.S., Shahrabi T. Abrasive wear behaviour of Si3N4/TiO2 nanocomposite coatings fabricated by plasma electrolytic oxidation. Surface & Coating Technology. 2010(205):41-46.
- Ansari F., Naderi R., Dehghanian C. Study on the protective function of cloisite incorporated silane sol-gel coatings cured at different conditions. Applied Clay Science. 2015(114):93-102.
- Arrabal R., Matykina E., Viejo F., Skeldon P., Thompson G.E. Corrosion resistance of WE43 and AZ91D magnesium alloys with phosphate PEO coatings. Corrosion Science. 2008(50):1744-1752.
- Boinovich L.B., Gnedenkov S.V., Alpysbaeva D.A., Egorkin V.S., Emelyanenko A.M., Sinebryukhov S.L., Zaretskaya A.K. Corrosion resistance of composite coatings on low-carbon steel containing hydrophobic and superhydrophobic layers in combination with oxide sublayers. Corrosion Science. 2012(55):238-245.
- Chang L.M., Tian L.F., Liu W., Duan X.Y. Formation of dicalcium phosphate dihydrate on magnesium alloy by micro-arc oxidation coupled with hydrothermal treatment. Corrosion Science. 2013(72):118-124.
- Dunleavy C.S., Golosnoy I.O., Curran J.A., Clyne T.W. Characterisation of discharge events during plasma electrolytic oxidation. Surface & Coating Technology. 2009(203):3410-3419.
- Gnedenkov A.S., Sinebryukhov S.L., Mashtalyar D.V., Gnedenkov S.V. Features of the corrosion processes development at the magnesium alloys surface. Surface & Coatings Technology. 2013(225):112-118.
- Gnedenkov A.S., Sinebryukhov S.L., Mashtalyar D.V., Gnedenkov S.V. Protective properties of inhibitor-containing composite coatings on a Mg alloy. Corrosion Science. 2016(102):348-354.
- Gnedenkov A.S., Sinebryukhov S.L., Mashtalyar D.V., Gnedenkov S.V. Localized corrosion of the Mg alloys with inhibitor-containing coatings: SVET and SIET studies. Corrosion Science. 2016(102):269-278.
- Gnedenkov S.V., Egorkin V.S., Sinebryukhov S.L., Vyaliy I.E., Pashinin A.S., Emelyanenko A.M., Boinovich L.B. Formation and electrochemical properties of the superhydrophobic nanocomposite coating on PEO pretreated Mg–Mn–Ce magnesium alloy. Surface & Coating Technology. 2013(232): 240-246.
- Gnedenkov S.V., Khrisanfova O.A., Sinebryukhov S.L., Puz’ A.V., Gnedenkov A.S. Composite protective coatings on the nitinol surface. Materials and Manufacturing Processes. 2008(23):26-30.
- Gnedenkov S.V., Sinebryukhov S.L. Electrochemical impedance spectroscopy of oxide layers on the titanium surface. Russian Journal of Electrochemistry. 2005(41):858-865.
- Ivanou D.K., Starykevich M., Lisenkov A.D., Zheludkevich M.L., Xue H.B., Lamaka S.V., Ferreira M.G.S. Plasma anodized ZE41 magnesium alloy sealed with hybrid epoxy-silane coating. Corrosion Science. 2013(7):300-308.
- Jönson M., Persson D. The influence of the microstructure on the atmospheric corrosion behavior of magnesium alloys AZ91D and AM50. Corrosion Science. 2010(52):1077-1085.
- Kohl M., Kalendová A. Effect of polyaniline salts on the mechanical and corrosion propertiesof organic protective coatings. Progress in Organic Coatings. 2015(86):96-107.
- Lavrushin G.A., Gnedenkov S.V., Gordienko P.S., Sinebryukhov S.L. Cyclic strength of titanium alloys, anodized under micro-arc conditions, in sea water. Protection of Metals and Physical Chemistry of Surfaces. 2002(38);4:363-365.
- Li J.L., Wang Y.X., Wang L.P. Structure and protective effect of AlN/Al multilayered coatings on NdFeB by magnetron sputtering. Thin Solid Films. 2014(568):87-93.
- Li J.Z., Shao Z.C., Tian Y.W., Kang F.D., Zhai Y.C. Application of microarc oxidation for Al, Mg, Ti and their alloys. Corrosion Science and Protection Technology. 2004(16);4:218-221.
- Li Q.B., Liang J., Wang Q. Plasma electrolytic oxidation coatings on lightweight metals. Modern Surface Engineering Treatments. InTech. 2013;4:75-99.
- Liang J., Srinivasan P.B., Blawert C., Dietzel W. Comparison of electrochemical corrosion behaviour of MgO and ZrO2 coatings on AM50 magnesium alloy formed by plasma electrolytic oxidation. Corrosion Science. 2009(51):2483-2492.
- Lohrengel M.M. Thin anodic oxide layers on aluminium and other valve metals: high field regime. Materials Science and Engineering: R: Reports. 1993(11):243-294.
- Matykina E., Arrabal R., Monfort R., Skeldon P., Thompson G.E. Incorporation of zirconia into coatings formed by DC plasma electrolytic oxidation of aluminium in nanoparticle suspensions. Applied Surface Science. 2008(255):2830-2839.
- Minaev A.N., Gnedenkov S.V., Sinebryukhov S.L., Mashtalar D.V. Protective coatings for the elements of ships power plants which use sea water. Journal of the Korean Society of Marine Engineering. 2012(36);3:341-350.
- Minaev A.N., Gnedenkov S.V., Sinebryukhov S.L., Mashtalyar D.V., Egorkin V.S., Gnedenkov A.S., Nadaraia K.V. Functional Plasma Electrolytic Oxidation Coatings for Offshore Structures. Proceedings of the International Offshore and Polar Engineering Conference, 2014, p. 418-422.
- Mirelman L.K., Curran J.A., Clyne T.W. The production of anatase-rich photoactive coatings by plasma electrolytic oxidation. Surface & Coatings Technology. 2012(207):66-71.
- Němcová A., Skeldon P., Thompson G.E., Morse S., Čížek J., Pacal B. Influence of plasma electrolytic oxidation on fatigue performance of AZ61 magnesium alloy. Corrosion Science. 2010(52):540-547.
- Portebois L., Mathieu S., Bouizi Y., Vilasi M., Mathieu S. Effect of boron addition on the oxidation resistance of silicide protective coatings: A focus on boron location in as-coated and oxidised coated niobium alloys. Surface & Coatings Technology. 2014;253:292-299.
- Shokouhfar M., Dehghanian C., Baradaran A. Preparation of ceramic coating on Ti substrate by plasma electrolytic oxidation in different electrolytes and evaluation of its corrosion resistance. Applied Surface Science. 2011(257):2617-2624.
- Sinebryukhov S.L., Gnedenkov A.S., Mashtalyar D.V., Gnedenkov S.V. PEO-coating/substrate interface investigation by localised electrochemical impedance spectroscopy. Surface & Coating Technology. 2010(205):1697-1701.
- Stergioudi F., Vogiatzis C.A., Gkrekos K., Michailidis N., Skolianos S.M. Electrochemical corrosion evaluation of pure, carbon-coated and anodized Al foams. Corrosion Science. 2015(91):151-159.
- Stojadinovi´c S., Vasili´c R., Petkovi´c M., Kasalica B., Belˇca I., ˇZeki´c A., Zekovi´c Lj. Characterization of the plasma electrolytic oxidation of titanium in sodium metasilicate. Applied Surface Science. 2013(265):226-233.
- Wang L., Chen L., Yan Z.C., Fu W. Optical emission spectroscopy studies of discharge mechanism and plasma characteristics during plasma electrolytic oxidation of magnesium in different electrolytes. Surface & Coating Technology. 2010(205):1651-1658.
- Yagi S., Kuwabara K., Fukuta Y., Kubota K., Matsubara E. Formation of self-repairing anodized film on ACM522 magnesium alloy by plasma electrolytic oxidation. Corrosion Science. 2013(73):188-195.
- Yerokhin A.L., Nie X., Leyland A., Matthews A., Dowey S.J. Plasma electrolysis for surface engineering. Surface & Coating Technology. 1999(122):73-93.
- Zeng R.-C., Zhang F., Lan Z.-D., Cui H.-Z., Han E.-H. Corrosion resistance of calcium-modified zinc phosphate conversion coatings on magnesium–aluminium alloys. Corrosion Science. 2014(88):452-459.
- Zhang X.L., Yao Z.P., Jiang Z.H., Zhang Y.F., Liu X.W. Investigation of the plasma electrolytic oxidation of Ti6Al4V under single-pulse power supply. Corrosion Science. 2011(53):2253-2262.