TECHNICAL SCIENCES. Materials science and materials technology

 Lebedev M.P., Nikolenko S.V., Verchoturov A.D., Suy N.A.

MIHAIL P. LEBEDEV, Director of Institute of Physical and Technical Problems of the North, named after V.P. Larionov of Siberian Branch of RAS, Yakutsk, Russia, Corresponding member of RAS, Doctor of Technical Science, expert in the field of physics and chemistry of materials, e-mail: m.p.lebedev@prez.ysn.ru 
SERGEY V. NIKOLENKO, Doctor of Technical Sciences, е-mail: niko-la1960@mail.ru;
ANATOLY D. VERCHOTUROV, Doctor of Technical Sciences, Professor, Institute of Water and Environmental Problems, FEB RAS, Khabarovsk, Russia, е-mail: verhoturov36@mail.ru 
NIKOLAY A. SUY, Engineer, Institute of Materials Science, Khabarovsk Research Center, FEB RAS, Russia, е-mail: heranim@mail.ru 

Studies on electrodes made on the basis of tungsten and titanium carbides for mechanised electrospark alloying 

The article deals with the development and study of tungsten and tungsten-free electrodes for electrospark alloying (ESA) with the addition of boron minerals and aluminum oxide nanopowder obtained by the explosion of conductors with particles from 20 to 80 nm in size. There has been studied the process of generating alloy layers (AL) on the steel 45 with the usage of mechanised ESA and presented the data of the study on of the surface layers obtained from the steel 45 with the usage of the electrodes made of the titanium carbide with nickel molybdenum binder and the addition of 0.5–3 wt. % mineral (datolite concentrate (DTC)) as well as the electrodes made of tungsten carbide with cobalt binder and the addition of aluminum oxide nanopowder 1, 3, 5 wt. %. There have been determined the most effective modes of ESA and the composition of the formed AL: the 500 Hz frequency and the duration of the spark discharge of 20–80 microseconds. The method of atomic force microscopy has made it possible to reveal the formation of nanostructures generated from nanoparticles TiC and WC in the process of ESA and AL. In all cases, when adding DTC and aluminum oxide nanopowder, the productivity of the ESA process and the microabrasive wear of AL increase.

Key words: electrospark alloying, SHS extrusion, powder metallurgy, electrode material, nanostructures.

REFERENCES

1.            A.S. Number 1683347 from 14.07.89. USSR. Electrode material based on titanium carbide for spark alloying and charge for its production, A.D. Verkhoturov, T.A. Sheveleva, S.V. Nikolenko et al. (in Russ). [A.S. № 1683347 ot 14.07.89. SSSR. Jelektrodnyj material na osnove karbida titana dlja jelektroiskrovogo legirovanija i shihta dlja ego poluchenija / A.D. Verhoturov, T.A. Sheveljova, S.V. Nikolenko i dr.].

2.            Verkhoturov A.D., Physico-chemical foundations of electrospark alloying metal surfaces. Vladivostok, Dal'nauka, 1992, 180 p. (in Russ). [Verhoturov A.D. Fiziko-himicheskie osnovy processa jelektroiskrovogo legirovanija metallicheskih poverhnostej. Vladivostok: Dal'nauka, 1992. 180 s.].

3.            Koval'chenko M.S., Paustovsky A.V., Kirilenko S.N., et al, Electric alloying steel hardmetal, Powder metallurgy. 1984;6:47-50. (in Russ). [Koval'chenko M.S., Paustovskij A.V., Kirilenko S.N. i dr. Jelektroiskrovoe legirovanie stali bezvol'framovymi tverdymi splavami // Poroshkovaja metallurgija. 1984. № 6. S. 47–50].

4.            Kolgachev A.E., Panin S.V, Pochivalov Y.I., Antipina N.A., Effect of prenanostructuring of the surface layer on the wear resistance of the titanium alloy VT6 subjected to chemical and thermal treatment, Math. Tomsk Polytechnic. Univ. 2006;(309)2:144-148. (in Russ). [Kolgachev A.E., Panin S.V., Pochivalov Ju.I., Antipina N.A. Vlijanie predvaritel'nogo nanostrukturirovanija poverhnostnogo sloja na iznosostojkost' titanovogo splava VT6, podvergnutogo himiko-termicheskoj obrabotke // Izv. Tom. politehn. un-ta. 2006. T. 309, № 2. S. 144–148].

5.            Kudryashov A.E., Levashov E.A., Vetrov N.V. et al., A new class of electric-spark coatings for products made of titanium alloys, working in extreme conditions, Math. universities. Powder metallurgy and functional coatings. 2008;3:34-45. (in Russ). [Kudrjashov A.E., Levashov E.A., Vetrov N.V. i dr. Novyj klass jelektroiskrovyh pokrytij dlja izdelij iz titanovyh splavov, rabotajushhih v jekstremal'nyh uslovijah jekspluatacii // Izv. vuzov. Poroshkovaja metallurgija i funkcional'nye pokrytija. 2008. № 3. S. 34–45].

6.            Levashov E.A., Kudryashov A.E., Pogozhev Yu.S. et аl., Features of formation of nanostructured electric-spark coatings on titanium alloy OT4-1 using dispersion-strengthened nanoparticles electrode materials systems TiC-Ti3AlC2, Math. universities. Non-ferrous metallurgy. 2007;5:54-64. (in Russ). [Levashov E.A., Kudrjashov A.E., Pogozhev Ju.S. i dr. Osobennosti formirovanija nanostrukturirovannyh jelektroiskrovyh zashhitnyh pokrytij na titanovom splave OT4-1 pri ispol'zovanii dispersno-uprochnennyh nanochasticami jelektrodnyh materialov sistemy TiC-Ti3AlС2 // Izv. vuzov. Cvetnaja metallurgija. 2007; № 5. S. 54–64].

7.            Muha I.M., Verkhoturov A.D., Gnedova S.V., Material alloy electrodes on the basis of hard alloys WC-Co with microaddings boron, Electronic Materials Processing. 1981;5:24-27. (in Russ). [Muha I.M., Verhoturov A.D., Gnedova S.V. Material legirujushhih jelektrodov na osnove tvjordyh splavov WC–Co

s mikrodobavkami bora // Jelektronnaja obrabotka materialov. 1981. № 5. S. 24–27].

8.            Nazarenko O.B., Electroexplo nanopowders: preparation, properties, applications, ed. A.P. Ilyin. Tomsk, Tomsk Univ. Press, 2005, 148 p. (in Russ). [Nazarenko O.B. Jelektrovzryvnye nanoporoshki: poluchenie, svojstva, primenenie / pod red. A.P. Il'ina. Tomsk: Izd-vo Tom. un-ta, 2005. 148 s.].

9.            Namitokov K.K., EDM phenomenon. M., Energiya, 1978. 456 p. (in Russ). [Namitokov K.K. Jelektrojerozionnye javlenija. M.: Jenergija, 1978. 456 s.].

10.          Nicolenco S.V., Verkhoturov A.D., New electrode materials for electric-spark alloying. Vladivostok, Dal'nauka, 2005, 219 p. (in Russ). [Nikolenko S.V., Verhoturov A.D. Novye jelektrodnye materialy dlja jelektroiskrovogo legirovanija. Vladivostok: Dal'nauka, 2005. 219 s.].

11.          Panov V.S., Chuvilin A.M., Technology and properties of sintered hard alloys and products made of them. M., MISA, 2001, 452 p. (in Russ). [Panov V.S., Chuvilin A.M. Tehnologija i svojstva spechennyh tverdyh splavov i izdelij iz nih. M.: MISIS, 2001. 452 s.].

12.          Sereda N.N., Koval'chenko M.S., Belik I.T. et al., The use of hard alloys based on titanium carbide as a wear-resistant materials and tool blade, Powder metallurgy. 1977;5:94-97. (in Russ). [Sereda N.N., Koval'chenko M.S., Belik I.T. i dr. Ispol'zovanie tverdyh splavov na osnove karbida titana v kachestve iznosostojkih materialov i lezvijnogo instrumenta // Poroshkovaja metallurgija. 1977. № 5. S. 94–97].

13.          Tretyakov V.I., Fundamentals of physical metallurgy and production technology of sintered hard alloys. M., Metallurgy, 1976, 512 p. (in Russ). [Tret'jakov V.I. Osnovy metallovedenija i tehnologii proizvodstva spechennyh tverdyh splavov. M.: Metallurgija, 1976. 512 s.].

14.          Khimukhin S.N., Rea Hosen, Verkhoturov A.D., Rea E.H., Formation of the structure layer on metals and alloys under electric discharge machining. Khabarovsk, Univ DVGUPS, 2010, 239 p. (in Russ). [Himuhin S.N., Ri Hosen, Verhoturov A.D., Ri Je.H. Formirovanie struktury sloja na metallah i splavah pri jelektroiskrovoj obrabotke. Habarovsk: Izd-vo DVGUPS, 2010. 239 s.].

15.          Sheveleva T.A., Verkhoturov A.D., Nikolenko S.V. et al., Influence of additives et al datolite concentrate electrode materials TiC-Ni-Mo on the properties of the surface layer of steel after spark alloying, Electronic Materials Processing. 1991;1:26-30. (in Russ). [Sheveleva T.A., Verhoturov A.D., Nikolenko S.V. i dr. Vlijanie dobavok datolitovogo koncentrata v jelektrodnye materialy TiC-Ni-Mo na svojstva poverhnostnogo sloja stalej posle jelektroiskrovogo legirovanija // Jelektronnaja obrabotka materialov. 1991. № 1. S. 26–30].

16.          El-Eskandarany M.S., Fabrication and characterizations of new nanocomposite WC/Al2O3 materials by room temperature ball milling and subsequent consolidation, J. of Alloys and Compounds. 2005;(391)1-2:228-235.

17.          Kusano Y., Acker K. Van, Hutchings I.M., Methods of data analysis for the micro-scale abrasion test on coated substrates, Surf. Coat. Technol. 2004;(183)2-3:312-327.

18.          Nikolenko S.V., Kuz’menko A.P., Timakov D.I., Abakymov P.V., Nanostructuring a Steel Surface by Electrospark Treatment with New Electrode Materials Based on Tungsten Carbide, Surface Engineering and Applied Electrochemistry. 2011;(47)3:217-224.

19.          Nikolenko S.V., Pyachin S.A., Burkov A.A., Formation of electrospark coatings of the VK8 hard alloy with the Al2O3 additive, Russian J. of Non-Ferrous Metals. 2011;(52)1:56-61.

20.          Nikolenko S.V., Surface Nanostructuring of Steel 35 by Electrospark Machining with Electrodes Based on Tungsten Carbide and Added Al2O3 Nanopowder, Russian Engineering Research. 2011;(31)6:556-561.

21.          Radek N., Bartkowiak K., Performance properties of electrospark deposited carbide-ceramic coatings modified by laser beam, Physics Procedia. 2010;(5):417-423.

22.          Zamulaeva E.I., Levashov E.A., Kudryashov A.E. et al., Electrospark coatings deposited onto an Armco iron substrate with nano- and microstructured WC–Co electrodes: Deposition process, structure, and properties, Surface & Coatings Technology. 2008;(202):3715-3722.

End of the article: N 1, 2015.