ENGINEERING SCIENCES. Shipbuilding
Dorozhko V., Kitaev M.
VENIAMIN M. DOROZHKO, Candidate of Physico-Mathematical Sciences, Chief Researcher, Laboratory of high-precision optical methods of measurement, Institute of Automation and Control Processes Far Eastern Branch of the Russian Academy of Sciences, Vladivostok. 5, Radio St., Vladivostok, Russia, 690041, e-mail: bendor@iacp.dvo.ru
MAKSIM V. KITAEV, Candidate of Technical Sciences, Lector, Department of Shipbuilding and Ocean engineering, School of Engineering, Far Eastern Federal University, Vladivostok. 8 Sukhanova St., Vladivostok, Russia, 690950. e-mail: kitaev.mv@dvfu.ru
Modelling anomalous wave impact on a barrier
The article presents the results of the modelling of the processes of formation, nonlinear transformation and hit of an anomalous wave. The dynamic loads on vertical and horizontal barriers were computed with the use of the CFD technology. The barriers simulated the construction parts of marine engineering structures. The results of the modelling reveal that the anomalous waves having the same values of their steepness have similar profiles.
Key words: modeling, anomalous wave, dynamic load, barrier, wave steepness.
REFERENCES
1. Afanasiev K.E., Stukolov S.V. Numerical simulation of the interaction of isolated waves with obstacles. Computational technologies. 1999(4);6:3-16. (in Russ.). [Afanas'ev K.E., Stukolov S.V. Chislennoe modelirovanie vzaimodejstvija uedinennyh voln s prepjatstvijami // Vychislitel'nye tehnologii. 1999. T. 4, № 6. S. 3–16].
2. Zakharov V.E. Hamiltonian formalism of nonlinear waves in dispersive media. Journal izvestiya VUZ. Radio physics. 1974(17):326-343. (in Russ.). [Zaharov V.E. Gamil'tonov formalizm dlja voln v nelinejnyh dispergirujushhih sredah // Izv. vuzov. Radiofizika. 1974. T. 17. S. 326–343].
3. Zakharov V.E. Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Applied Mechanics and Technical Physics. 1968(9);2:86-94. (in Russ.). [Zaharov V.E. Ustojchivost' periodicheskih voln konechnoj amplitudy na poverhnosti glubokoj zhidkosti // Zhurn. prikladnoj mehaniki i tehnicheskoj fiziki. 1968. T. 9, № 2. S. 86–94].
4. Zakharov V.E., Shabat A.B. Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. J. Experimental and Theoretical Physics. 1972(61);1:118-134. (in Russ.). [Zaharov V.E., Shabat A.B. Tochnaja teorija dvumernoj samofokusirovki i odnomernoj avtomoduljacii voln v nelinejnyh sredah // Zhurn. jeksperimental'noj i teoreticheskoj fiziki. 1972. T. 61, vyp. 1. S. 118–134].
5. Kuznetsov S.Y., Saprykina Y.V. Experimental studies of the appearance of the killer waves during the evolution of narrow spectrum steep waves. Fundamental and Applied hydrophysics. 2012(5);1:52-63. (in Russ.).
[Kuznecov S.Ju., Saprykina Ja.V. Jeksperimental'nye issledovanija vozniknovenija voln-ubijc pri jevoljucii uzkogo spektra krutyh voln // Fundamental'naja i prikladnaja gidrofizika. 2012. T. 5, № 1. S. 52–63].
6. Kurkin A.A., Pelinovsky E.N. Killer waves: facts, theory and modeling: a monograph. The Nizhny Novgorod. State technical. University. Nizhny Novgorod, 2004. 158 p. (in Russ.). [Kurkin A.A., Pelinovskij E.N. Volny-ubijcy: fakty, teorija i modelirovanie: monografija. Nizhegorod. gos. teh. un-t. N. Novgorod, 2004. 158 s.].
7. Pelinovsky E.N., Slyunyaev A.V. “Freaks” – sea killer waves. Nature. 2007;3:14-23. (in Russ.). [Pelinovskij E.N., Sljunjaev A.V. “Friki” – morskie volny-ubijcy // Priroda. 2007. № 3. S. 14–23].
8. Slyunyaev A.V., Sergeeva A.V. Numerical simulation and analysis of spatio-temporal fields of anomalous sea waves. Fundamental and Applied hydrophysics. 2012(5);1:24-36. (in Russ.). [Sljunjaev A.V., Sergeeva A.V. Chislennoe modelirovanie i analiz prostranstvenno-vremennyh polej anomal'nyh morskih voln // Fundamental'naja i prikladnaja gidrofizika. 2012. T. 5, № 1. S. 24–36].
9. Chalikov D.V. Portrait of a killer wave. Fundamental and Applied Hydrophysics. 2012(5);1:5-13. (in Russ.). [Chalikov D.V. Portret volny-ubijcy // Fundamental'naja i prikladnaja gidrofizika. 2012. T. 5, № 1. S. 5–13].
10. ANSYS Fluid Dynamics Verification Manual (2013). ANSYS, Inc. Southpointe 275, Technology Drive, Canonsburg, PA 15317, p. 194.
11. Benjamin T.B., Feir J.E. The disintegration of wave trains in deep water. J. Fluid. Mech. 1967;27; 417-430.
12. Blazek J. Computational Fluid Dynamics: Principles and Applications. Vol. 1. Elsevier, 2001, 440 p.
13. Clauss G.F., Schmittner C.E., Hennig J. Simulation of rogue waves and their impact on marine. Proceedings of MAXWAVE, Final meeting. Oct. 8–10, 2003. Geneva, Switzerland, P. 1–10.
14. Clauss G.F., Schmittner C.E., Stuck R. Numerical wave tank – simulation of extreme waves for the investigation of structural responses. Proceedings of OMAE 2005, 24th Intern. Conf. on Offshore Mechanics and Arctic Engineering. Halkidiki, Greece. June 12–17, 2005, р. 785-789.
15. Hellan O., Hermundstad O.A., Stansberg C.T. Designing for wave impact on bow and deck structures. Proceedings of the eleventh Intern. offshore and polar engineering conf. Stavanger, Norway, June 17-22, 2001. P. 349-357.
16. Hsu K.L., Chen Y.J., Chau S.W., Chien H.P. Ship flow computation of DTMB 5415. CFD workshop Tokyo, Japan. March 9–11, 2005.
17. Longuet-Higgins M.S. The asymptotic behavior of the coefficients in Stokes’s series for surface gravity waves. J. of Applied Mathematics. 1985(34);269-277.
18. Minami M., Sawada H., Tanizawa K. Study of ship responses and wave loads in the freak wave. Proceedings of the sixteenth International offshore and polar engineering conference. San Francisco, California, USA, May 28 – June 2, 2006, р. 272-280.
19. Nikolkina I., Didenkulova I. Rogue waves in 2006–2010. Natural hazards and Earth system sciences. 2011(11);2913-2924.
20. Perlin M., He J., Bernal L.P. An experimental study of deep water plunging breakers. Physics of fluids. 1996(8):9;2365-2374.
21. Ruban V., Kodama Y., Ruderman M. et al. Rogue waves – towards a unifying concept: Discussions and debates. The European Physical Journal Special Topics. 2010:185;5-15.
22. Song C., Sirviente A.I. A numerical study of breaking waves. Physics of Fluids. 2004(16):7; 2649-2667.
23. Yakhot V., Orszag S.A. Renormalization group analysis of turbulence: Basic theory. Journal of scientific computing. 1986(1):1;1-51